Diff�omorphismes holomorphes Anosov
نویسندگان
چکیده
منابع مشابه
Stability of Anosov Diffeomorphisms
Definition 1. Let < , > be a C∞ Riemannian metric on M and | · | its induced norm on TxM for each x ∈ M . We say that f ∈ D is Anosov if 1. the tangent bundle of M splits in a Whitney direct sum of continuous subbundles TM = E ⊕ E, where E and E are Df -invariant, 2. there exists constants c, c′ > 0 and 0 < λ < 1 such that |Dfn xv| < c λn|v| |Df−n x w| < c′ λn|w| for all x ∈ M , v ∈ E x, and w ...
متن کاملOn Contact Anosov Flows
The study of decay of correlations for hyperbolic systems goes back to the work of Sinai [36] and Ruelle [32]. While a manifold of results were obtained thru the years for maps, some positive results have been established for Anosov flows only recently. Notwithstanding the proof of ergodicity, and mixing, for geodesic flows on manifolds of negative curvature [15, 1, 35] the first quantitative r...
متن کاملLyapunov functions and Anosov flows
We show that if the codimension one Anosov flow Φ on a compact n-manifold M satisfies the so called condition (L), then there is a continuous Lyapunov function g : R → R, where R is the universal covering space of M , such that g strictly increases along the orbits of the lift of Φ and is constant on the leaves of the lift of the strong stable foliation of the “synchronization” (i.e. suitable r...
متن کاملLipschitz Distributions and Anosov Flows
We show that if a distribution is locally spanned by Lipschitz vector fields and is involutive a.e., then it is uniquely integrable giving rise to a Lipschitz foliation with leaves of class C1,Lip. As a consequence, we show that every codimension-one Anosov flow on a compact manifold of dimension > 3 such that the sum of its strong distributions is Lipschitz, admits a global cross section. The ...
متن کاملOn Uniformly Quasiconformal Anosov Systems
We show that for any uniformly quasiconformal symplectic Anosov diffeomorphism of a compact manifold of dimension at least 4, its finite cover is C∞ conjugate to an Anosov automorphism of a torus. We also prove that any uniformly quasiconformal contact Anosov flow on a compact manifold of dimension at least 5 is essentially C∞ conjugate to the geodesic flow of a manifold of constant negative cu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Commentarii Mathematici Helvetici
سال: 2004
ISSN: 0010-2571,1420-8946
DOI: 10.1007/s00014-004-0811-3